PHYS 440/640 Computational Physics

Dates and Location:

Th 2:30PM - 3:45PM Janet & Walter Sondheim 207

Mo 3:00PM - 4:15PM Physics 226A

INSTRUCTOR: Dr. Zhibo Zhang Phone: 410-455-6315

Email: Zhibo.Zhang@umbc.edu

OFFICE HOURS: PHYS417: Friday 2:00~3:00PM or Through Email

TEXTS:

"Computational Physics: Problem Solving with Computers" (2nd edition) By R. H. Landau et al. Published by WILEY-VCH

GRADING:

Homework (30%), Midterm Project (20%), Final Project (30%), Participation/Discussion (20%)

COURSE OUTLINE:

- **❖** Computer Setup And Programing Warm-Up (Week 1~2)
 - Computer Setup
 - > Python programming basics
 - Numpy and Matplotlib
- **Understanding Errors and Uncertainties In Numerical Computations**
 - > Type of Errors
 - > Tricks to control errors

❖ Monte Carlo method

- ➤ 1-D random walk
- > 3-D random walk
- ➤ Real-world Problem: Photon scattering in cloud

❖ Numerical Integration

- Ouadrature methods
- ➤ Monte Carlo method

Real-world Problem: Integrate Radiance to Flux

Project: 1)

❖ Numerical Differentiation and Root Searching

- Bisect method
- ➤ Newton-Raphson method
- Real-world Problem: Cloud property remote sensing

❖ Midterm Projects

Linear algebra and matrix computing

- ➤ Matrix inversion and Eigenvalue
- > Singular value decomposition
- > Real-world problem: Greenhouse effect and atmospheric temperature profile

❖ Data fitting

- Quadrature fitting
- ➤ Lest-square fitting
- ➤ Real-world problem: Satellite data analysis

❖ Differential Equations: ODE and PDE (if time permits)

- > Trajectory
- ➤ Wave equation
- ➤ Real-world problem: Maxwell Eq. and E&M wave propagation

❖ Final Projects