Atmospheric Physics I

PHYS 621, Fall 2015

Dates and Location: Tuesday & Thursday, 2:30PM- 3:45AM

INSTRUCTOR: Dr. Pengwang Zhai
Email: pwzhai@umbc.edu
Ph.: 410-455-3682 (office)

OFFICE HOURS: Anytime Through Email appointment

TEXTS:

REFERENCE TEXTS (Highly recommend):

DESCRIPTION: Composition and structure of the earth’s atmosphere, atmospheric radiation and thermodynamics, fundamentals of atmospheric dynamics, overview of climatology.

GRADING:
Homework (25%), Two Midterms (20% each), Final (30%), Participation/Discussion(5%)
COURSE OUTLINE:

Overview
A. Earth’s atmosphere
 System of units
 The Sun and the orbit and size of Earth
 Chemical constituents of Earth’s atmosphere
 Vertical structure of temperature and density
 Wind and precipitation
 Ozone layer, hydrological and carbon cycles
 Global Energy Budget

B. Atmospheric Radiation
 Maxwell’s Equation & EM wave
 Blackbody radiation: Planck’s Law and Stefan-Boltzmann’s law
 Spectral characteristics of Solar and Thermal infrared radiation
 Atmospheric absorption & Greenhouse effect
 Atmospheric scattering, clouds and aerosols
 Radiative forcing and climate
 Spatial and Temporal distribution of solar radiation

C. Overview of atmospheric motion and the general circulation
 Atmospheric Forces, Coriolis effect and Coriolis force
 One-cell circulation model and three-cell circulation model
 Effects of season and land mass distribution
 Jet stream and monsoon
 General circulation and climate zones

Atmospheric thermodynamics

A. Thermodynamic Principles
 Ideal gas equation of state; Dry air as a mixture of ideal gases;
 First Law: work, heat, specific heat and energy conservation
 Second Law: entropy, adiabatic processes, potential temperature
 Thermodynamic potentials
 Thermodynamic cycles
 Hydrostatic equation, scale height, geopotential
 Dry adiabatic lapse rate and static stability

B. Thermodynamics of moist air
 Phase changes of water and the phase diagram, latent heat
 Humidity, vapor pressure
 Saturation vapor pressure, Clausius-Clapeyron equation
 The pseudo-adiabatic chart
 Saturated adiabatic lapse rate

C. Static stability
 Lifting condensation level (LCL), level of free convection (LFC)
 Brunt-Vaisala frequency and gravity waves
D. Thermodynamic aspects of various weather and climate phenomena:
- Cloud formation, hurricanes, rain shadow deserts, monsoons

Atmospheric Dynamics

A. Kinematic and mathematical fundamentals
- Vector differential operators and integral theorems
- Scalar, vector, and tensor fields
- Vorticity and divergence
- Rotating frames
- Curvilinear coordinates

B. Atmospheric forces
- Driving versus steering forces
- Gravity, pressure gradient, Coriolis, friction, centrifugal force
- Pressure gradient force on isobaric surfaces
- The sea breeze
- Geopotential height contours, surface and 500mb weather maps

C. Atmospheric equations of motion
- Eulerian and Lagrangian frames, streamlines and trajectories
- Forces and stresses
- Conservation of mass: continuity equation
- Conservation of energy: thermodynamic equation
- Conservation of momentum: momentum equation

D. Applications of the equations of motion: balanced flow
- Geostrophic, cyclostrophic and inertial flow
- Gradient wind, thermal wind and temperature advection
- Frictional effects

E. Applications of the equations of motion: time dependent
- Scale analysis
- Creation, conservation and modification of vorticity
- Barotropic vorticity equation and Rossby waves
- Barotropic and baroclinic stratification
- Sound waves, shallow water waves and gravity waves
- Potential vorticity on isentropic surfaces

The planetary boundary layer (if time permits)

A. Overall structure and processes
- Vertical transport of mass, energy and momentum
- Aspects of turbulence
- Modelling rapidly varying and small scale degrees of freedom
- Reynolds decomposition, flux gradient, eddy fluxes
- Ekman spiral, Ekman pumping
- Coupling of the climate subsytems in the PBL
Academic Honesty Policy

By enrolling in this course, each student assumes the responsibilities of an active participant in UMBC’s scholarly community, in which everyone's academic work and behavior are held to the highest standards of honesty. Cheating, fabrication, plagiarism, and helping others to commit these acts are all forms of academic dishonesty, and they are wrong. Academic misconduct could result in disciplinary action that may include, but is not limited to, suspension or dismissal. To read the full Student Academic Conduct Policy, consult the UMBC Student Handbook, the Faculty Handbook, or the UMBC Policies section of the UMBC Directory. [Statement adopted by UMBC's Undergraduate Council and Provost's Office.]