PHYS 640 Computational Physics

TIME AND LOCATION:
Tuesday 11:30 - 12:45 Mathematics and Psychology Building, Room 010
Thursday 11:30 - 12:45 Mathematics and Psychology Building, Room 010

INSTRUCTOR: Dr. Tamás Várnai
Phone: 301-614-6408
Email: varnai@umbc.edu

OFFICE HOURS: Tuesday afternoon, exact hours & location TBD

TEXTS:
“Computational Physics: Problem Solving with Computers” By R. H. Landau et al.
Published by WILEY-VCH

GRADING:
Homework (30%), Midterm Project (20%), Final Project (30%),
Participation/Discussion (20%)

COURSE OUTLINE:
❖ Computer Setup and Programing Warm-Up (Weeks 1~2)
 (this part is taught by Dr. Zhibo Zhang)
 ➢ Computer Setup
 ➢ Python programming basics
 ➢ Numpy and Matplotlib

❖ Understanding Errors and Uncertainties In Numerical Computations
 ➢ Type of Errors
 ➢ Tricks to control errors

❖ Monte Carlo method
 ➢ 2-D random walk
 ➢ 3-D random walk
 ➢ Real-world Problem: Photon scattering in cloud
- **Numerical Integration**
 - Quadrature methods
 - Monte Carlo method
 - Real-world Problem: Integrate Radiance to Flux

- **Numerical Differentiation and Root Searching**
 - Bisect method
 - Newton-Raphson method
 - Real-world Problem: Cloud property remote sensing

- **Midterm Projects**

- **Linear algebra and matrix computing**
 - Matrix inversion and Eigenvalue
 - Singular value decomposition
 - Real-world problem: Greenhouse effect and atmospheric temperature profile

- **Data fitting**
 - Quadrature fitting
 - Least-square fitting
 - Real-world problem: Satellite data analysis

- **Differential Equations: ODE and PDE (if time permits)**
 - Trajectory
 - Wave equation
 - Real-world problem: Maxwell Eq. and E&M wave propagation

- **Final Projects**