2018 Spring - PHYS 315 [8255]

Book: Peter Schneider Extragalactic astronomy and cosmology ISBN-13: 978-3642540820 ISBN-10: 3642540821

3 credits

Pre-requisites: PHYS122 or PHYS 122H with grade C or higher. A good grade in either PHYS 105 or PHYS 304 will be of some advantage, but not required.

Material: scientific calculator

Instructor: Professor T.J.Turner Office Hours, M,W,F by appointment only in PHYS 412 Phone 410 455 1978 email <u>tjturner@umbc.edu</u>

Overview: The formation, constituents, structure and dynamics of galaxies. Galaxy types. Hierarchy of structure. AGN. Dark matter. Distance estimation.

Course objectives: Main objectives are for students to become familiar with the characteristics and components of the various galaxy types in the known universe.

Detailed Objectives: By the end of the course students will be able to -describe the various types of galaxies found in the universe -describe some of the observing techniques used in the study of galaxies -understand the components of our Galaxy, the Milky Way -understand the importance of supermassive black holes in galaxy nuclei -understand the importance of galaxy studies to cosmology

Grading: Final Exam 20% 2 Mid term Exams 20% each Telescope attendance 10% Class attendance 10% Homework 20%

The course will include (provisional topics, may be revised in the details):

The Milky Way as a galaxy

o Galactic coordinates

o Determination of distances within our Galaxy

- + Trigonometric parallax
- + Proper motions
- + Moving cluster parallax
- + Photometric distance; extinction and reddening
- + Spectroscopic distance
- + Distances of visual binary stars

- + Distances of pulsating stars
- o The structure of the Galaxy
 - + The Galactic disk: Distribution of stars
 - + The Galactic disk: chemical composition and age
 - + The Galactic disk: dust and gas
 - + Cosmic rays
 - + The Galactic bulge
 - + The visible halo
 - + The distance to the Galactic center
- o Kinematics of the Galaxy
 - + Determination of the velocity of the Sun
 - + The rotation curve of the Galaxy
- o The Galactic microlensing effect: The quest for compact dark matter
 - + The gravitational lensing effect I
 - + Galactic microlensing effect
 - + Surveys and results
 - + Variations and extensions
- o The Galactic center
 - + Where is the Galactic center?
 - + The central star cluster
 - + A black hole in the center of the Milky Way
 - + Flares from the Galactic center
 - + The proper motion of Sgr A*
 - + Hypervelocity stars in the Galaxy

The world of galaxies

o Classification

- + Morphological classification: The Hubble sequence
- + Other types of galaxies
- o Elliptical galaxies
 - + Classification
 - + Brightness profile
 - + Composition of elliptical galaxies
 - + Dynamics of elliptical galaxies
 - + Indicators of a complex evolution
- o Spiral galaxies
 - + Trends in the sequence of spirals
 - + Brightness profile
 - + Rotation curves and dark matter
 - + Stellar populations and gas fraction
 - + Spiral structure
 - + Corona in spirals?
- o Scaling relations
 - + The Tully-Fisher relation
 - + The Faber-Jackson relation
 - + The fundamental plane
 - + The Dn-sigma relation
- o Black holes in the centers of galaxies
 - + The search for supermassive black holes
 - + Examples for SMBHs in galaxies
- + Correlation between SMBH mass and galaxy properties
- o Extragalactic distance determination
 - + Distance of the LMC
 - + The Cepheid distance

- + Secondary distance indicators
- o Luminosity function of galaxies
 - + The Schechter luminosity function
 - + The bimodal color distribution of galaxies
- o Galaxies as gravitational lenses
 - + The gravitational lens effect Part II
 - + Simple models
 - + Examples for gravitational lenses
 - + Applications of the lens effect
- o Population synthesis
 - + Model assumptions
 - + Evolutionary tracks in the HRD; integrated spectrum
 - + Star formation history and galaxy colors
 - + Metallicity, dust, and HII regions
 - + Summary
 - + The spectra of galaxies
- o Chemical evolution of galaxies

Active galactic nuclei

- o Introduction
 - + Brief history of AGNs
 - + Fundamental properties of quasars
 - + Quasars as radio sources: synchrotron radiation
 - + Broad emission lines
- o AGN zoology
 - + QSOs
 - + Seyfert galaxies
 - + Radio galaxies
 - + OVVs
 - + BL Lac objects
- o The central engine: a black hole
 - + Why a black hole?
 - + Accretion
 - + Superluminal motion
 - + Further arguments for SMBHs
 - + A first mass estimate for the SMBH: the Eddington luminosity
- o Components of an AGN
 - + The IR, optical, and UV-continuum
 - + The broad emission lines
 - + Narrow emission lines
 - + X-ray emission
 - + The host galaxy
 - + The black hole mass in AGNs
- o Family relations of AGNs
 - + Unified models
 - + Beaming
 - + Beaming on large scales
 - + Jets at higher frequencies

Clusters and groups of galaxies

* The Local Group o Phenomenology

- o Mass estimate
- o Other components of the Local Group
- * Galaxies in clusters and groups
 - o The Abell catalog
 - o Luminosity function of cluster galaxies
 - o Morphological classification of clusters
 - o Spatial distribution of galaxies
 - o Dynamical mass of clusters
 - o Additional remarks on cluster dynamics
 - o Intergalactic stars in clusters of galaxies
 - o Galaxy groups
 - o The morphology-density relation
- * X-ray radiation from clusters of galaxies
 - o General properties of the X-ray radiation
 - o Models of the X-ray emission
 - o Cooling flows
 - o The Sunyaev-Zeldovich effect
 - o X-ray catalogs of clusters
- * Scaling relations for clusters of galaxies
 - o Mass-temperature relation
 - o Mass-velocity dispersion relation
 - o Mass-luminosity relation
 - o Near-infrared luminosity as mass indicator
- Clusters of galaxies as gravitational lenses
 - * Luminous arcs
 - * The weak gravitational lens effect