2018 Spring — PHYS 315 [8255]

Book: Peter Schneider Extragalactic astronomy and cosmology

ISBN-13: 978-3642540820
ISBN-10: 3642540821

3 credits

Pre-requisites: PHYS122 or PHYS 122H with grade C or higher. A good grade in either PHYS 105 or PHYS 304 will be of some advantage, but not required.

Material: scientific calculator

Instructor: Professor T.J. Turner
Office Hours, M,W,F by appointment only in PHYS 412
Phone 410 455 1978
email tjturner@umbc.edu

Course objectives: Main objectives are for students to become familiar with the characteristics and components of the various galaxy types in the known universe.

Detailed Objectives: By the end of the course students will be able to

- describe the various types of galaxies found in the universe
- describe some of the observing techniques used in the study of galaxies
- understand the components of our Galaxy, the Milky Way
- understand the importance of supermassive black holes in galaxy nuclei
- understand the importance of galaxy studies to cosmology

Grading:
Final Exam 20%
2 Mid term Exams 20% each
Telescope attendance 10%
Class attendance 10%
Homework 20%

The course will include (provisional topics, may be revised in the details):

- The Milky Way as a galaxy
 o Galactic coordinates
 o Determination of distances within our Galaxy
 + Trigonometric parallax
 + Proper motions
 + Moving cluster parallax
 + Photometric distance; extinction and reddening
 + Spectroscopic distance
 + Distances of visual binary stars
+ Distances of pulsating stars
o The structure of the Galaxy
 + The Galactic disk: Distribution of stars
 + The Galactic disk: chemical composition and age
 + The Galactic disk: dust and gas
 + Cosmic rays
 + The Galactic bulge
 + The visible halo
 + The distance to the Galactic center
o Kinematics of the Galaxy
 + Determination of the velocity of the Sun
 + The rotation curve of the Galaxy
o The Galactic microlensing effect: The quest for compact dark matter
 + The gravitational lensing effect I
 + Galactic microlensing effect
 + Surveys and results
 + Variations and extensions
o The Galactic center
 + Where is the Galactic center?
 + The central star cluster
 + A black hole in the center of the Milky Way
 + Flares from the Galactic center
 + The proper motion of Sgr A*
 + Hypervelocity stars in the Galaxy

The world of galaxies
o Classification
 + Morphological classification: The Hubble sequence
 + Other types of galaxies
o Elliptical galaxies
 + Classification
 + Brightness profile
 + Composition of elliptical galaxies
 + Dynamics of elliptical galaxies
 + Indicators of a complex evolution
o Spiral galaxies
 + Trends in the sequence of spirals
 + Brightness profile
 + Rotation curves and dark matter
 + Stellar populations and gas fraction
 + Spiral structure
 + Corona in spirals?
 + Scaling relations
 + The Tully-Fisher relation
 + The Faber-Jackson relation
 + The fundamental plane
 + The Dn-sigma relation
o Black holes in the centers of galaxies
 + The search for supermassive black holes
 + Examples for SMBHs in galaxies
 + Correlation between SMBH mass and galaxy properties
o Extragalactic distance determination
 + Distance of the LMC
 + The Cepheid distance
+ Secondary distance indicators
 o Luminosity function of galaxies
 + The Schechter luminosity function
 + The bimodal color distribution of galaxies
 o Galaxies as gravitational lenses
 + The gravitational lens effect - Part II
 + Simple models
 + Examples for gravitational lenses
 + Applications of the lens effect
 o Population synthesis
 + Model assumptions
 + Evolutionary tracks in the HRD; integrated spectrum
 + Star formation history and galaxy colors
 + Metallicity, dust, and HII regions
 + Summary
 + The spectra of galaxies
 o Chemical evolution of galaxies

Active galactic nuclei

 o Introduction
 + Brief history of AGNs
 + Fundamental properties of quasars
 + Quasars as radio sources: synchrotron radiation
 + Broad emission lines
 o AGN zoology
 + QSOs
 + Seyfert galaxies
 + Radio galaxies
 + OVVs
 + BL Lac objects
 o The central engine: a black hole
 + Why a black hole?
 + Accretion
 + Superluminal motion
 + Further arguments for SMBHs
 + A first mass estimate for the SMBH: the Eddington luminosity
 o Components of an AGN
 + The IR, optical, and UV-continuum
 + The broad emission lines
 + Narrow emission lines
 + X-ray emission
 + The host galaxy
 + The black hole mass in AGNs
 o Family relations of AGNs
 + Unified models
 + Beaming
 + Beaming on large scales
 + Jets at higher frequencies

Clusters and groups of galaxies

 * The Local Group
 o Phenomenology
* Mass estimate
 * Other components of the Local Group
* Galaxies in clusters and groups
 * The Abell catalog
 * Luminosity function of cluster galaxies
 * Morphological classification of clusters
 * Spatial distribution of galaxies
 * Dynamical mass of clusters
 * Additional remarks on cluster dynamics
 * Intergalactic stars in clusters of galaxies
 * Galaxy groups
 * The morphology-density relation
* X-ray radiation from clusters of galaxies
 * General properties of the X-ray radiation
 * Models of the X-ray emission
 * Cooling flows
 * The Sunyaev-Zeldovich effect
 * X-ray catalogs of clusters
* Scaling relations for clusters of galaxies
 * Mass-temperature relation
 * Mass-velocity dispersion relation
 * Mass-luminosity relation
 * Near-infrared luminosity as mass indicator
Clusters of galaxies as gravitational lenses

 * Luminous arcs
 * The weak gravitational lens effect