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Correlated parts of the Type-I ring are focused into single-mode
(SM) fibers, then directed through interference filters (IF) and
finally single-photon detectors D1 & D2. A pair registers as a
coincident count, measured by the time-to-digital converter
(TDC). We measure rates on the order of 100 pairs/sec per mW of
pump power, with 10 nm of bandwidth.
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Phase-matching types: Type I - output photons have the same polarization
Type II - they have orthogonal polarization

BBO can be used for either, depending on crystal orientation (OA angle).
Output cross-sections are shown above for degenerate SPDC (V-polarized
390 nm pump). Type-II pairs (Fig. A & B) are also entangled in polarization.

A tuning curve shows output angle as a function of
wavelength. Degenerate pairs ( 𝜆 = 780 nm) exit
symmetrically (𝜃 = ±3.5°). If we are interested in
non-degenerate pairs, the above plot says they mostly
lie outside the Type-I degenerate ring (Fig. C).
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SPDC Output

Two-photon InterferenceIntroduction
Entangled photon pairs are a fundamental resource for
quantum optics & information research. To produce
them in the lab, we use Spontaneous Parametric
Down-Conversion (SPDC) [1].

Inside a nonlinear crystal, a high-energy pump photon
essentially decays into two lower-energy photons,
conserving energy and momentum (phase-matching
conditions). The output is entangled in multiple degrees
of freedom: time & frequency, space & momentum. We
can calculate its precise shape from the phase-matching
equations, and derive results like those below.

We vary the relative delay between the
photons by Δ𝑡, and count coincidences 𝑅𝑐.

|Δ𝑡| decreases

indistinguishability increases

𝑅𝑐 decreases

The shape of this “dip” depends on the filter
bandwidth 𝜎. For gaussian filters [3]:

At the right, deviations between data and
fits can be attributed to non-gaussian filters.

This is not “bunching,” but destructive interference between indistinguishable alternatives to a 
detection event [2]. We can see this in a simple Fock-state model: T-R and R-T amplitudes cancel!

The interfering terms both result in a coincident count. If detectors fire simulataneously, we have no 
distinguishing information between these possibilities (T-R or R-T). Distinguishability destroys 
interference, and could come from differences in frequency, polarization, timing (relative delay), etc.
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Let’s put our photon pairs to the test!

What happens when two single photons enter a 50/50 beam-splitter?
We might expect one of 4 outcomes (T: transmitted, R: reflected)…

…with equal probability. But instead, we observe photons “bunching”
together, always exiting the same way! How?

Ψ = 30.5°

Experiment: Hong-Ou-Mandel “Dip” - 407 nm CW pump

813 ± 10 nm

810 ± 20 nm

𝜎𝐹𝑊𝐻𝑀 = 11.5 nm

Visibility: 96 ± 1%𝜎𝐹𝑊𝐻𝑀 = 26 nm

Gaussian fits

𝑅𝑐 ∝ 1 − 𝑒− 𝜎Δ𝑡 2/2
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