

Properties of Molybdenum Disulfide

Molybdenum disulfide (MoS₂) possesses a hexagonal, layered structure with layers bound by van der Waals forces.

- MoS₂ possesses a direct band gap of 1.8 eV in monolayer form.
- Integration of MoS₂ with high-k dielectrics is necessary for fabrication of top-gated MOSFETs and other devices.
- The MoS₂ surface is hydrophobic and not conducive to dielectric film growth.

Objectives

- To investigate growth mechanisms of dielectric films deposited via atomic layer deposition (ALD) on MoS₂ surfaces.
- To increase chemical reactivity of (i.e. functionalize) the MoS₂ surface.
- To deposit conformal, high-quality dielectric films on MoS₂ surfaces via ALD.

CVD-Grown MoS₂

- Molybdenum trioxide (MoO₃) and sulfur powder are used as precursors.
- Sulfur powder is evaporated upstream at 200°C.
- Downstream, 300 nm SiO₂/Si wafers are placed face down above the MoO₃ powder, heated at 730°C.
- Monolayers are confirmed via Raman spectroscopy and AFM.

Surface functionalization of monolayer MoS₂ for atomic layer deposition using gold chloride salts

Jaron A. Kropp¹, Yuhang Cai², Zihan Yao², Dr. Wenjuan Zhu², and Dr. Theodosia Gougousi¹ ¹Department of Physics, UMBC, Baltimore, MD ²Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL

ALD on Untreated MoS₂

3 nm and 6 nm TiO₂ is grown via ALD on monolayer MoS₂ at 100°C using tetrakis(dimethylamino) titanium and water. At this temperature, precursor physisorption (condensation) is expected.

- mM HAuCl₄ solution was drop cast on MoS₂ monolayers for 2-3 minutes.
- Gold chloride salts are expected to bond to the sulfur surface, leaving the MoS₂ surface chlorine-terminated.
- Chlorine termination provides nucleation sites that modify the surface chemistry and seed the ALD film.

- 3 minute treatment results in reduction of HAuCl_a and formation of gold nanoparticles.
- Gold nanoparticles act as a p-type dopant.
- Formation of nanoparticles may be of interest for catalysis or gas sensing.

Surface Analysis

- Atomic force microscopy is used to probe the surface.
- RMS roughness: RMS = $\sqrt{\frac{1}{N}\sum_{i}(z_i z_{av_i})}$
- We assume a self-affine surface such that:

$$RMS = \begin{cases} \sim L^{\alpha} & L \\ constant & L \end{cases}$$

The correlation length is related to the diffusion length of precursors across the surface.

$$_{vg})^2$$

 $< L_{c}$ $\geq L_c$

atoms are removed during deposition. Though the surface chemistry has been modified, growth of smooth dielectric films has not been achieved.

* The authors would like to acknowledge Berc Kalanyan, James Maslar, and Brent Sperling of NIST for contributing the polycrystalline MoS₂ samples used in this work.

ECCS 1407677

	•	3 nm Al ₂ O ₃ deposited on
		polycrystalline* MoS ₂ .
	٠	Gold remains after Al ₂ O ₃
₩₩,		deposition.
	٠	Chlorine is below XPS
		detection limit.