L. Michael Hayden

Mike Hayden
Contact Information
hayden@umbc.edu
410-455-3199
Physics, Rm 412;
Labs 406 C&D
Hayden Research Group
Intro to THz 
Google Scholar+

Title

Professor

Education

Ph.D. Physics – University of California – Davis, 1987
M.S. Physics – University of California – Davis, 1984
B.S. Physics – United States Naval Academy, 1978

Previous Experience

I joined the faculty at UMBC in 1991 after  service in the U. S. Navy as a Nuclear Propulsion Officer onboard nuclear submarines and after a short career in the Advanced Optical Interconnect group at Unisys Defense Systems.

Professional Interests

My research is generally focused on light-matter interactions, particularly on the sub-picosecond timescale. We are interested in developing and characterizing new materials useful for high-speed electronics and communications, terahertz (THz) emission and detection, and solar energy generation.

The main thrust of our current work uses an optical pump – THz probe technique called THz time-domain spectroscopy to study novel electronic materials ranging from 2D materials like transition metal di-chalcogenides (e.g., MoS2, WS2, WSe2, etc.) to thin-film organic semiconductors used in solar cells and organic light emitting diodes (OLEDs).

The laboratory uses several other nonlinear optical methods to characterize our samples such as second harmonic generation (SHG), electro-optic (EO) modulation, and optical parametric amplification (OPA). These methods rely heavily on ultra-short optical pulses generated by femtosecond laser systems.


Selected Publications

“Positive and Negative Photoconductivity in Monolayer MoS2 as a Function of Physisorbed Oxygen”, Jon K. GustafsonDaniel WinesEllen GulianCan Ataca, and L. Michael HaydenJ. Phys. Chem. C 125, 8712-8718 (2021).

“Ultrafast carrier dynamics of monolayer WS2 via broadband time-resolved THz spectroscopy”, J. Gustafson, P. Cunningham, K. McCreary, B. Jonker, and L. Michael Hayden, J. Phys. Chem. C 123, 30676-30683 (2019).

“Efficient metallic spintronic emitters of ultrabroadband terahertz radiation”, T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. Michael Hayden, M. Wolf, M. Münzenberg, M. Kläui, T. Kampfrath, Nature Photonics 10, 483-488 (2016).

“Charge trapping and exciton dynamics in large-area CVD grown MoS2”, P. D. Cunningham, K. M. McCreary, A. T. Hanbicki, M. Currie, B. T. Jonker, and L. Michael Hayden, J. Phys. Chem. C 120, 5819-5826 (2016).

“Ultrafast carrier dynamics and optical properties of nanoporous silicon at terahertz frequencies”, J. R. Knab, X. Lu, F. Vallejo, G. Kumar, T. E. Murphy, and L. Michael Hayden, Optics Mater. Express 4, 300-307 (2014).

“Simplified model for optical rectification of broadband terahertz pulses in lossy waveguides including a new generalized expression for the coherence length”, F. A. Vallejo and L. Michael Hayden, Optics Express, 21, 24398-24412 (2013).

“Design of ultra-broadband terahertz polymer waveguide emitters for telecom wavelengths using coupled mode theory”, F. A. Vallejo and L. Michael Hayden, Optics Express 21, 5842-5858 (2013).

“Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials”, P. D. Cunningham, N. N. Valdes, Felipe A. Vallejo, L. Michael Hayden, B. Polishak, S. Huang, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. Williams, and R. Twieg, J. Appl. Phys., 109, 043505 (2011)

“Optical properties of DAST in the THz range”, P. D. Cunningham and L. Michael Hayden, Optics Express, 18, 23620-23625 (2010).

“Charge carrier dynamics of metallated polymers characterized by optical-pump THz-probe spectroscopy”, P. Cunningham, L. Michael Hayden, H.-L. Yip, and A. K.-Y. Jen, J. Phys. Chem. B 113, 15427-15432 (2009).

“Wideband 15-THz response using organic electrooptic emitter-sensor pairs at telecommunication wavelengths”, C. V. McLaughlin, L. Michael Hayden, B. Polishak, S. Huang, J. Luo, T. D. Kim, A. K. –Y. Jen, Appl. Phys. Lett. 92, 151107 (2008). Also published in the Virtual Journal of Ultrafast Science, 7 (2008).

“Carrier dynamics resulting from above and below gap excitation of P3HT and P3HT/PCBM investigated by optical-pump terahertz-probe spectroscopy”, P. D. Cunningham and L. Michael Hayden, J. Phys. Chem. C 112, 7928-7935 (2008).

“Hybrid success”, L. Michael Hayden, Nature Photonics 1, 138-139 (2007).

“Comparison of parallel-plate and in-plane poled polymer films for terahertz sensing”, C. V. McLaughlin, X. Zheng, and L. Michael Hayden, Appl. Opt. 46, 6283-6290 (2007).

“Organic broadband terahertz sources and sensors”, X. Zheng, C. V. McLaughlin, P. Cunningham, and L. Michael Hayden, J. Nanoelect. Optoelect. 2, 58-76 (2007).

“Wideband terahertz spectroscopy of explosives”, M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. Michael Hayden, and R. Osiander, Chem. Phys. Lett. 434, 227-230 (2007).

“Atomistic molecular modeling of the effect of chromophore concentration on the electro-optic coefficient in nonlinear optical polymers”, M.R. Leahy-Hoppa, P.D. Cunningham, J.A. French, and L. Michael Hayden, J. Phys. Chem. A 110, 5792-5797 (2006).

“Modeling a broadband THz system based on an electro-optic polymer emitter-sensor pair”, X. Zheng, C. V. McLaughlin, M. R. Leahy-Hoppa, A. M. Sinyukov, and L. Michael Hayden, J. Opt. Soc. Am. B. 23, 1338-1347 (2006).

“Broadband and gap-free response of a terahertz system based on a poled polymer emitter-sensor pair”, X. Zheng, A. Sinyukov, and L. Michael Hayden, Appl. Phys. Lett. 87, 0811115 (2005). Also published in the Virtual Journal of Ultrafast Science, 4 (2005).

“Efficient electro-optic polymers for THz applications”, A. M. Sinyukov and L. Michael Hayden, J. Phys. Chem. B 108, 8515-8522 (2004).

“Fully atomistic modeling of an electric field poled guest-host nonlinear optical Polymer”, W.-K. Kim and L. Michael Hayden, J. Chem. Phys. 111, 5212-5222 (1999).

Ultra-wide bandwidth THz spectroscopy can be used for applications in biological imaging, package inspection, security, sensors, and explosives detection.
Ultra-wide bandwidth THz spectroscopy can be used for applications in biological imaging, package inspection, security, sensors, and explosives detection.