Skip to Main Content

New article by grad student Daniel Wines and Dr. Ataca

April 1, 2020 12:53 PM
“Tuneable structure and magnetic properties in Fe3-xVxGe alloys”

R. Mahat, Shambhu KC, D, Wines, F. Ersan, S. Regimi, U. Karki, R. White, C. Ataca, P. Padhan, A. Gupta, P. LeClair

Steam Lab members, Dr. Ataca and Daniel Wines, work on a combined theoretical and experimental study of how V substitution can tune the electronic and magnetic properties of the bulk Heusler compound Fe3-xVxGe. This work shed lights into the local magnetization by induced by alloying for engineering future magnetic storage devices.

Journal of Alloys and Compunds, 830, 154403

URL: https://doi.org/10.1016/j.jallcom.2020.154403

Abstract: We report a detailed experimental and theoretical study of the effects of V substitution for Fe atom on the structural, magnetic, transport, electronic and mechanical properties of an off-stoichiometric Fe3-xVxGe intermetallic alloy series (0 ≤ x ≤ 1). Single phase microstructures are observed for x < 0.75, whereas higher V content alloys x ≥ 0.75 are multi-phased. Vanadium substitution is observed to induce a diffusionless martensitic phase transformation from a Heusler-like L21 structure to hexagonal DO19 structure, as corroborated by Differential Scanning Calorimetry results. The vanadium substitution is also found to decreases the grain size, inhibiting the grain growth by pinning the grain boundary migration. All the alloys in the series are found to be soft ferromagnets at 5 K with saturation magnetic moment and Curie temperature decreasing as V concentration increases. The low temperature saturation magnetic moment is in close agreement with the expected Slater-Pauling values for the L21 phases, while the hexagonal samples have markedly higher values of saturation moments. First-principle calculations agree with the experimental findings and reveal that V substitution energetically favours one of the Fe sites in Fe3Ge. The electrical resistivity measured over the temperature range from 5 K to 400 K shows negative temperature coefficient of resistivity at high temperatures with increasing the V concentration. Relatively high mechanical hardness values are also observed, with the values increasing with increasing V content. Vanadium substitution is found to play a central role in tuning the mechanical properties, stabilizing the L21 structure, and shifting the martensitic transformation temperature to higher values from that of parent Fe3Ge.